Indian Institute of Technology Hyderabad

Department of Mathematics

AsSIGNMENT 3

MA 4020 : Linear algebra
Max Marks: 50

1. Prove that if T^{2} has a cyclic vector, then T has a cyclic vector. Is the converse true? Classify up to similarity all $n \times n$ complex matrices A such that $A^{n}=I$.
2. Let T be a linear operator on the n-dimensional vector space V, and suppose that T has n-distinct characteristic values. Prove that T is diagonalizable.
3. Suppose A is a 2×2 real symmetric matrix. Prove that A is similar over \mathbb{R} to a diagonal matrix.
4. Let N be a 2×2 complex matrix such that $N^{2}=0$. Prove that either $N=0$ or N is similar over C to

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] .
$$

5. Let A be the real matrix

$$
A=\left[\begin{array}{ccc}
3 & -4 & -4 \\
-1 & 3 & 2 \\
2 & -4 & -3
\end{array}\right]
$$

Write down the rational canonical form of A.
6. Let n be a positive integer, and let V be the space of polynomials over \mathbb{R} which have degree at most n (throw in the 0 -polynomial). Let D be the differential polynomial on V. What is the minimal polynomial for D ?
7. Let V be a finite-dimensional vector space and let W_{1}, \ldots, W_{k} be subspaces of V such that

$$
V=W_{1}+\cdots+W_{k} \text { and } \operatorname{dim} V=\operatorname{dim} W_{1}+\cdots+\operatorname{dim} W_{k} .
$$

Prove that $V=W_{1} \oplus \cdots \oplus W_{k}$.
8. Let A be a complex 5×5 matrix with characteristic polynomial

$$
f=(x-2)^{3}(x+7)^{2}
$$

and the minimal polynomial $p=(x-2)^{2}(x+7)$. What is the Jordan form for A ?
9. How many possible Jordan forms are there for a 6×6 complex matrix with characteristic polynomial $(x+2)^{4}(x-1)^{2}$?
10. Find the Jordan form of A over \mathbb{C}, where A is

$$
\left[\begin{array}{cccccc}
2 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 & 0 \\
-1 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{array}\right] .
$$

